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A fully conservative model for compressible two-�uid �ow

Jeroen Wackers∗;† and Barry Koren‡
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SUMMARY

A �ve-equation model for compressible two-�uid �ow is proposed, that is based on physical �ow
equations only. The model is conservative and pressure-oscillation free. Equations for continuous �ow
and jump conditions for discontinuities are given, as well as a discretization of the equations and an
adaptation of the HLL Riemann solver to two-�uid �ow. Numerical tests in 1D and 2D show the
accuracy of the method. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In compressible two-�uid �ows, the �ow medium consists of two �uids that do not mix,
separated by a sharp interface. Interface-capturing methods for these �ows model this interface
as a mixture region, a numerically smeared transition from �uid 1 to �uid 2. Abgrall and
Karni [1] have shown that many conservative formulations of such models produce large
pressure errors. This problem can be solved by using locally non-conservative methods [1] or
by solving the full two-phase �ow model [2].
Here, an intermediate approach is presented. The current method is fully conservative and

pressure-oscillation free, but it is simpler than two-phase methods, because it has a single
pressure and velocity for the two �uids. It is an extension of the work by Van Brummelen
and Koren [3], it is described in detail in Reference [4]. Flow equations are derived from a
physics-based model which allows an exact closure for �ow discontinuities; an improvement
over similar methods, like the method by Kapila et al. [5].
The present method has two major advantages. First, the conservative formulation gives

good capturing of shocks and interfaces, also for problems with very strong shocks. And
second, the model strongly resembles a single-�uid model: it does not require a complex
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interface-tracking algorithm. It can thus be solved with existing techniques, even on complex,
irregular grids.

2. FLOW MODEL

The numerical model used here for the two-�uid �ow is based on a physical mixture model.
The �uids, however, are not fully mixed: the ‘mixture’ may be thought to consist of very
small bits of the two pure �uids, in an arbitrary pattern. Each �uid has its own pure-�uid
equation of state and the �uids interact only by exerting forces on each other. In the model,
the pressure and the velocity of the �uids are equal, but each �uid has its own density. The
volume fraction of �uid 1, �, is used to denote the relative amounts of the two �uids. Thus, in
1D, we have �ve independent state variables (p, u, �1, �2 and �), so we need �ve di�erential
equations to solve the �ow.
The bulk two-�uid �ow satis�es the standard Euler equations

(�)t + (�u)x =0 (1a)

(�u)t + (�u2 + p)x =0 (1b)

(�E)t + (�Eu+ pu)x =0 (1c)

In these equations, the bulk density � and bulk total energy E are

�= ��1 + (1− �)�2; �E= ��1E1 + (1− �)�2E2 (2)

with the total energy for each �uid j=1; 2 de�ned as Ej= ej + 1
2u
2. Here ej is the internal

energy of �uid j.
Two more �ow equations are needed to close the system. The �rst one is the conservation

of mass for �uid 1: the �uids are not supposed to change into each other. Using the partial
density �1�, this equation is

(�1�)t + (�1u�)x=0 (3a)

Together with Equation (1a), this equation gives mass conservation for both �uids. For the
last equation, the energy balance of �uid 1 is used. This equation has a special property: the
�uids exert forces on each other, so they exchange energy. This exchange appears as a source
term in the equation:

(�1E1�)t + (�1E1u�+ pu�)x= S (3b)

An expression for this source term is derived in the next section.
To close the system, equations of state (EOS) are needed for the two �uids. A possible

EOS is the ideal gas law

p=(�1 − 1)�1e1 = (�2 − 1)�2e2 (4)

with constant �’s. For this equation, it is easy to compute the primitive variables p and �
from the total energies.
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3. THE SOURCE TERM

3.1. Derivation of the source term

The source term S in Equation (3b) models the exchange of energy between �uids 2 and 1.
Euler �ow has no heat conduction, so the only energy exchanged is the work done by the
force between the �uids. This force is found from a momentum analysis.
Consider a �uid element in a smooth 1D �ow (Figure 1). The element contains �uids

1 and 2 (the interface is drawn schematically). The force on the entire �uid element is
p(x)−p(x+dx) and its bulk mass is � dx. The force on �uid 1 in the element is (p�)(x)−
(p�)(x + dx) + SM dx. Its mass is �1� dx and its acceleration is equal to the acceleration of
the entire element (because both �uids have the same velocity). Therefore,

p(x)− p(x + dx)
� dx

=
(p�)(x)− (p�)(x + dx) + SM dx

�1� dx

The force SM follows from this expression (using the mass fraction �=�1�=�):

SM =p�x + (�− �)px (5)

The �rst term, p�x, expresses the pressure force on the interface: pressure times the projected
height of the interface. The second term is friction. There is no friction in normal Euler �ow,
but the two �uids are mixed so well that friction force between the �uids prevents one �uid
from moving faster than the other. When �uid 1 is denser than �uid 2 (�¿�), then it is
accelerated less by the pressure force − px than the lighter �uid 2. In that case, the friction
force passes a part of the pressure force on �uid 2 to �uid 1, such that the velocity of the
two �uids remains the same. The energy source term S is the work done by the force SM

S= uSM =pu�x + (�− �)upx (6)

3.2. Characteristic analysis of the system for ideal gas

The source term (6) is valid for any EOS. Substitution of the ideal gas law (4) allows a
characteristic analysis of the �ow equations. This results in �ve wave speeds

�1 = u− c; �2;3;4 = u; �5 = u+ c; with c=
√
(�1�+ �2(1− �))p=� (7)

This combination of wave speeds is physically correct. It can be proved that (6) is the only
possible source term that gives such a combination.

fluid 1

fluid 2SM

x + dxx

p (x)
� (x)

� (x + dx)

p (x + dx)

Figure 1. Two-�uid element in smooth 1D �ow.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:1337–1343



1340 J. WACKERS AND B. KOREN

3.3. Source term in discontinuities

To allow weak solutions with discontinuities of the two-�uid �ow equations, we need a
proper de�nition of the �ow across a discontinuity. The �rst four equations, (1a)–(1c) and
(3a), satisfy the standard Rankine–Hugoniot jump condition �f = cs�q, with cs the speed of
the discontinuity. For the �fth equation, (3b), this condition becomes

�f = cs�q+
∫ xR

xL
S dx (8)

The integral must be evaluated across the discontinuity, which is impossible. However, if we
assume that the discontinuity is the limit of a viscous discontinuity and thus has a continuous
internal structure (the precise shape is unimportant), then we can write the state variables as
continuous functions of p and integrate the source term

∫ xR

xL
S dx=�(pu�) +

1
2
�L�L(uL − cs)�u2 + 1

�L(uL − cs)
∫ pR

pL
p� dp (9)

A derivation of this expression is given in Reference [4]. The last integral can be evaluated
by integration of the �fth equation, (3b), combined with an EOS. So there is a unique
jump condition for the present two-�uid model, but, unlike the single-�uid jump condition, it
depends on the material properties of the �uids.

4. NUMERICAL METHOD

4.1. Second-order accurate discretization

The �ow equations are discretized with a second-order accurate �nite-volume scheme. Fluxes
are computed with an improved version of Linde’s three-wave HLL approximate Riemann
solver [6], combined with a limited reconstruction of the cell interface states. The limiter
is applied to the primitive variables �; u; p; � and �. Time stepping is done with a two-step
scheme [7]

qk+1i = qki − �t
�x
(f ki+1=2 − f ki−1=2) +

�t
�x
ski

qk+2i = qki − 2�t
�x
(f k+1i+1=2 − f k+1i−1=2) + 2

�t
�x
sk+1i

(10)

4.2. Numerical source term

A discretization of the source term is needed in two places. First, an approximation of the
source term in a discontinuity is needed to compute the HLL �ux. The HLL solver models a
Riemann problem with three discontinuous waves. The easiest way to incorporate the source
term in these waves is to compute only one approximate solution of Equation (9), using the
left and right cell interface state, and to divide this source term proportionally over the three
waves. This procedure causes some small inaccuracies, but it is fast and straightforward.
Secondly, the source term for the time integration, si in Equation (10), is computed. It

consists of two parts: (i) Sources in the discontinuities at the cell faces. These are summed
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over all HLL waves, on interfaces i− 1
2 and i+

1
2 , that actually run into cell i. (ii) Sources in

the continuous �ow in the cell. These are integrated over the piecewise linear approximations
to the primitive variables, that follow from the use of the limiter.

5. NUMERICAL RESULTS

5.1. Shock tube tests

The method is tested �rst on a 1D Riemann problem for ideal gases. The results are compared
with the exact solutions. The test is a two-�uid variation of Sod’s problem, with a ten times
higher left pressure and density, giving it a pressure ratio of 1:100. Figure 2 shows that the
discontinuities (shock and two-�uid interface) are in the proper locations. The pressure is
constant over the contact discontinuity and the volume fraction is constant over the shock and
over the expansion fan: no pressure oscillations occur. A convergence study for this particular
problem, on �ve grids, shows that the L1-errors in �, u and p converge approximately with
the power 0.96 of the mesh width. The volume fraction converges with the power 0.78 of
the mesh width. This rate of convergence is comparable to that for single-�uid solutions with
limited second-order schemes.

5.2. Shock hitting helium bubble

This 2D test case has been taken from literature [8, 9]. It consists of a cylindrical helium
bubble in air, which is hit by an incoming shock wave. The problem is solved on a grid
of 200× 400 cells, with �t=1:25× 10−5. Figure 3 shows the solution at two times. The
(half) bubble is visible between x=−0:025 and 0:025. The incident shock, coming from the
right, can be seen in the air above the bubble, the curved shock in the bubble runs ahead
of this shock. The rightmost wave is an expansion wave, re�ected into the air behind the
shock. At the later time, a complicated �-shock structure has developed above the bubble.
Figure 4 shows the pressure and the volume fraction for this time. Of the waves appearing in
the density plot, the shock waves and expansions are visible in the pressure plot only and the
interface in the volume fraction plot only, as it should be. The pressure is continuous over
the interface.
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Figure 2. High-pressure, two-�uid Sod problem. (�; u; p)L = (10; 0; 10),
(�; u; p)R = (0:125; 0; 0:1), �L =1:4 and �R =1:6. The grid has 200 cells,
160 time steps, �t=�x=0:2 (CFL=0:56). Solid lines: exact solution.
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Figure 3. Shock hitting helium bubble, density at t=2:74× 10−3 and t=10:74× 10−3.
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Figure 4. Shock hitting helium bubble, pressure (left) and volume fraction (right) at t=10:74× 10−3.

The speeds of the shocks and the interface at the centerline (y=0) have been compared
with results from Quirk and Karni [9] (obtained on a very �ne, adapted grid). The di�erence
is between 0.7 and 2.2%.

6. CONCLUSION

A model for compressible two-�uid �ow is proposed, that is conservative and pressure-
oscillation free. 1D tests show that the model resolves contact discontinuities without creating
pressure errors and that it accurately handles problems with strong shocks. A 2D test con�rms
that the method also handles curved shocks and interfaces well.
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